Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.01.18.576147

ABSTRACT

MotivationAdaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. ResultsTo address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls retrieved from public databases. Availability and implementationnf-core/airrflow is available free of charge, under the MIT license on GitHub (https://github.com/nf-core/airrflow). Documentation and example results are available at https://nf-co.re/airrflow. Visual abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=107 SRC="FIGDIR/small/576147v1_ufig1.gif" ALT="Figure 1"> View larger version (24K): org.highwire.dtl.DTLVardef@8a3352org.highwire.dtl.DTLVardef@12f77daorg.highwire.dtl.DTLVardef@165a897org.highwire.dtl.DTLVardef@11f8ebe_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
Neoplasms , COVID-19 , Communicable Diseases
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.12.507666

ABSTRACT

COVID-19 vaccines based on a range of expression platforms have shown considerable protective efficacy, generating antibody and T cell immune responses. However, molecular pathways underpinning the COVID-19 vaccine priming of immunity against the SARS-CoV-2 virus have not yet been explored extensively. This analysis is critical to the optimization of future vaccination strategies, schedules, and combinations. Thus, we investigated a cohort of individuals pre- and post-vaccination to understand the humoral and cellular immune response against different COVID-19 vaccines, including recombinant adenoviral vector (rAdVV) and mRNA-based vaccines. Single-cell RNA sequencing allowed characterization of monocytes, T, NK and B cell activation at the transcriptomics/proteomic level, in response to different COVID-19 vaccines. Our data revealed that different COVID-19 vaccines elicit a unique and distinct mechanism of action. Specifically, we revealed that rAdVV vaccines negatively regulate CD4+ T cell activation, leukocytes chemotaxis, IL-18 signalling and antigen presentation by monocytes whilst mRNA vaccines positively regulate NKT cell activation, platelets activation and chemokine signalling pathways. An antigen-specific T cell response was already observed following the 1st vaccine dose and was not further augmented after the subsequent 2nd dose of the same vaccine and it was dependent on the type of vaccination used. Our integrated three layered-analyses highlights that COVID-19 vaccines evoke a strong but divergent immune response at the RNA, protein, and cellular levels. Our approach is able to pinpoint efficacy and mechanisms controlling immunity to vaccination and open the door for better vaccination which could induce innate and adaptive immunity equally in the long term.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL